
Week 10 – Wednesday



 What did we talk about last time?
 Exam 2!
 Before that:
 Review

 Before that:
 Thread safety
 POSIX threads
▪ Creating threads
▪ Exiting threads
▪ Joining threads
▪ Passing arguments to threads
▪ Reading results from threads











 A common model for threads is for them to go and perform 
some work

 After the work is done, they need to give back the answer
 There are three ways to do this:

1. Store the answer back into the dynamically allocated struct passed 
in for its arguments

2. Use the hack like before to return a "pointer" through the join that's 
actually an int

3. Return a pointer through the join to a dynamically allocated struct 
containing the answer



struct numbers {
int a;
int b;
int sum;

};

void *sum_thread (void *args)
{
struct numbers *values = (struct numbers*)args;
values->sum = args->a + args->b;
pthread_exit (NULL);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, sum_thread, values);
pthread_join(child, NULL);
printf ("Sum: %d\n", values->sum);
free (values);
pthread_exit (NULL);

}



struct numbers {
int a;
int b;

};

void *sum_thread (void *args)
{
struct numbers *values = (struct numbers*)args;
int sum = args->a + args->b;
free (values);
pthread_exit ((void*)sum);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, sum_thread, values);
void *sum = NULL;
pthread_join(child, &sum);
printf ("Sum: %d\n", (int) sum);
pthread_exit (NULL);

}



struct numbers {
int a;
int b;

};

void *calculator (void *args)
{
struct numbers* values = (struct numbers*)args;
struct numbers* answers = malloc(sizeof(struct numbers));  
answers->a = values->a + values->b;
answers->b = values->a - values->b;
free (values);
pthread_exit (answers);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, calculator, values);
struct numbers *answers = NULL;
pthread_join(child, (void **)&answers);
printf ("Sum: %d\nDifference: %d\n", answers->a, answers->b);
free (answers);
pthread_exit (NULL);

}





 All the nitty gritty details of starting threads, sending arguments to them, 
getting answers back, and joining the threads are annoying

 OpenMP is a library with a set of #pragma compiler directives that 
converts specially formatted code into code that takes care of all the 
threading details
 Known as implicit threading, since the programmer doesn't write thread code

 It's ideal for the fork-join model where a main thread forks lots of threads 
to work on parts of a problem and then joins them together, combining 
their answers

 The book has an example of OpenMP syntax, but I don't want to go into 
details

 If you do a lot of parallel processing with a simple structure, OpenMP can 
be worth learning



 Java, C#, Python, and many other newer languages 
encapsulate threads as objects

 Data can be provided in the object's constructor
 Methods can be used to read data after the thread has 

finished running
 Special methods are reserved for starting and joining threads



 The following Java class extends Thread and is designed to sum 
up part of an array 

public class Summer extends Thread {
private double[] array;
private int lower;
private int upper;
private double sum = 0;

public Summer(double[] array, int lower, int upper) {
this.array = array;
this.lower = lower;
this.upper = upper;

}

public void run() {
for(int i = lower; i < upper; i++)

sum += array[i];
}

public double getSum() { return sum; }
}



 The following Java method uses the class from the previous slide 
to sum up parts of an array in parallel

public double sum(double[] array, int threads) throws InterruptedException {
// Only works if length is evenly divisible
int stride = array.length / threads;
Summer[] workers = new Summer[threads];
for(int i = 0; i < threads; ++i) {

workers[i] = new Summer(array, i*stride, (i + 1)*stride);
workers[i].start();

}

double result = 0.0;
for(int i = 0; i < threads; ++i) {

workers[i].join();
result += workers[i].getSum();

}

return result;
}



 Although Java is relatively new, it was designed before the 
advent of ubiquitous multicore processors

 Threads are still accessed via a library rather than being part 
of the core language

 Modern languages like Rust and Go have keywords associated 
with threading



 Merely putting the keyword go in front of a function makes it run 
on a new thread

func main() {
// Create a channel for communication
messages := make(chan string)

fmt.Print("Guess a number between 1 and 10: ")

// Start keyboard listener as a goroutine with the channel
go keyboard_listener(messages)

// Wait until there is data in the channel
success := <-messages
if success == "true" {

fmt.Println("You must have guessed 7.")
}

}



 Rust is a new language that competes with C/C++ in systems programming
 It's finicky about ownership
 The move command in the following code gives the closure its  own copy of x at the current value

fn main() {
let mut x = 10; // Initialize a mutable variable x to 10

// Spawn a new thread
let child_thread = thread::spawn(move || { 

thread::sleep(time::Duration::from_secs(1)); // Sleep for one second
println!("x = {}", x); // Print x

});

// Change x in the main thread and print it
x += 1;
println!("x = {}", x);

// Join the thread and print x again
child_thread.join();
println!("x = {}", x);

}



 Let's write a threaded program that counts the number of primes 
less than 100,000,000

 We'll spawn a number of threads and divide up the range of values 
from 0 to 100,000,000 evenly

 To send data to each thread and get the result, we'll use 
dynamically allocated versions of the following struct:

struct range {
unsigned long start;
unsigned long end;
unsigned long count;

};



 As a reminder, here are the POSIX functions we need

 Create a new thread (not as bad as it looks)

 Exit from the current thread (giving a pointer to the result, if any)

 Join a thread (getting a pointer to its result, if any)

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

void pthread_exit (void *value_ptr);

void pthread_join (pthread_t thread, void *value_ptr);



 Divide the total number by the number of threads to determine how 
many numbers to give each thread

 Loop through all threads:
 Allocate a range struct to hold the lower and upper value for each thread
 Create each thread

 Loop through all threads:
 Join them

 Inside each thread:
 Loop from the lower to the upper value and increment a counter if the value is 

prime
 Store the count into the range struct
 Call pthread_exit()when done





 Synchronization and critical sections
 Locks



 Finish Assignment 6
 Due Friday before midnight

 Start working on Project 3 as soon as you can
 Read sections 7.2 and 7.3


	COMP 3400
	Last time
	Questions?
	Assignment 6
	Exam 2 Post Mortem
	POSIX Threads
	Returning values from threads
	Returning in the args struct
	Returning a "pointer" that's an int
	Returning a pointer to a dynamically allocated struct
	Language Approaches to Threading
	OpenMP
	Object-oriented approaches
	Java threading example
	Java threading example continued
	Modern languages
	Threading in Go
	Threading in Rust
	Concurrent prime number search
	POSIX thread functions
	Algorithm
	Upcoming
	Next time…
	Reminders

