
Week 10 – Wednesday

 What did we talk about last time?
 Exam 2!
 Before that:
 Review

 Before that:
 Thread safety
 POSIX threads
▪ Creating threads
▪ Exiting threads
▪ Joining threads
▪ Passing arguments to threads
▪ Reading results from threads

 A common model for threads is for them to go and perform
some work

 After the work is done, they need to give back the answer
 There are three ways to do this:

1. Store the answer back into the dynamically allocated struct passed
in for its arguments

2. Use the hack like before to return a "pointer" through the join that's
actually an int

3. Return a pointer through the join to a dynamically allocated struct
containing the answer

struct numbers {
int a;
int b;
int sum;

};

void *sum_thread (void *args)
{
struct numbers *values = (struct numbers*)args;
values->sum = args->a + args->b;
pthread_exit (NULL);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, sum_thread, values);
pthread_join(child, NULL);
printf ("Sum: %d\n", values->sum);
free (values);
pthread_exit (NULL);

}

struct numbers {
int a;
int b;

};

void *sum_thread (void *args)
{
struct numbers *values = (struct numbers*)args;
int sum = args->a + args->b;
free (values);
pthread_exit ((void*)sum);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, sum_thread, values);
void *sum = NULL;
pthread_join(child, &sum);
printf ("Sum: %d\n", (int) sum);
pthread_exit (NULL);

}

struct numbers {
int a;
int b;

};

void *calculator (void *args)
{
struct numbers* values = (struct numbers*)args;
struct numbers* answers = malloc(sizeof(struct numbers));
answers->a = values->a + values->b;
answers->b = values->a - values->b;
free (values);
pthread_exit (answers);

}

int main (int argc, char **argv)
{
pthread_t child;
struct numbers *values = malloc(sizeof(struct numbers));
values->a = 5;
values->b = 8;
pthread_create (&child, NULL, calculator, values);
struct numbers *answers = NULL;
pthread_join(child, (void **)&answers);
printf ("Sum: %d\nDifference: %d\n", answers->a, answers->b);
free (answers);
pthread_exit (NULL);

}

 All the nitty gritty details of starting threads, sending arguments to them,
getting answers back, and joining the threads are annoying

 OpenMP is a library with a set of #pragma compiler directives that
converts specially formatted code into code that takes care of all the
threading details
 Known as implicit threading, since the programmer doesn't write thread code

 It's ideal for the fork-join model where a main thread forks lots of threads
to work on parts of a problem and then joins them together, combining
their answers

 The book has an example of OpenMP syntax, but I don't want to go into
details

 If you do a lot of parallel processing with a simple structure, OpenMP can
be worth learning

 Java, C#, Python, and many other newer languages
encapsulate threads as objects

 Data can be provided in the object's constructor
 Methods can be used to read data after the thread has

finished running
 Special methods are reserved for starting and joining threads

 The following Java class extends Thread and is designed to sum
up part of an array

public class Summer extends Thread {
private double[] array;
private int lower;
private int upper;
private double sum = 0;

public Summer(double[] array, int lower, int upper) {
this.array = array;
this.lower = lower;
this.upper = upper;

}

public void run() {
for(int i = lower; i < upper; i++)

sum += array[i];
}

public double getSum() { return sum; }
}

 The following Java method uses the class from the previous slide
to sum up parts of an array in parallel

public double sum(double[] array, int threads) throws InterruptedException {
// Only works if length is evenly divisible
int stride = array.length / threads;
Summer[] workers = new Summer[threads];
for(int i = 0; i < threads; ++i) {

workers[i] = new Summer(array, i*stride, (i + 1)*stride);
workers[i].start();

}

double result = 0.0;
for(int i = 0; i < threads; ++i) {

workers[i].join();
result += workers[i].getSum();

}

return result;
}

 Although Java is relatively new, it was designed before the
advent of ubiquitous multicore processors

 Threads are still accessed via a library rather than being part
of the core language

 Modern languages like Rust and Go have keywords associated
with threading

 Merely putting the keyword go in front of a function makes it run
on a new thread

func main() {
// Create a channel for communication
messages := make(chan string)

fmt.Print("Guess a number between 1 and 10: ")

// Start keyboard listener as a goroutine with the channel
go keyboard_listener(messages)

// Wait until there is data in the channel
success := <-messages
if success == "true" {

fmt.Println("You must have guessed 7.")
}

}

 Rust is a new language that competes with C/C++ in systems programming
 It's finicky about ownership
 The move command in the following code gives the closure its own copy of x at the current value

fn main() {
let mut x = 10; // Initialize a mutable variable x to 10

// Spawn a new thread
let child_thread = thread::spawn(move || {

thread::sleep(time::Duration::from_secs(1)); // Sleep for one second
println!("x = {}", x); // Print x

});

// Change x in the main thread and print it
x += 1;
println!("x = {}", x);

// Join the thread and print x again
child_thread.join();
println!("x = {}", x);

}

 Let's write a threaded program that counts the number of primes
less than 100,000,000

 We'll spawn a number of threads and divide up the range of values
from 0 to 100,000,000 evenly

 To send data to each thread and get the result, we'll use
dynamically allocated versions of the following struct:

struct range {
unsigned long start;
unsigned long end;
unsigned long count;

};

 As a reminder, here are the POSIX functions we need

 Create a new thread (not as bad as it looks)

 Exit from the current thread (giving a pointer to the result, if any)

 Join a thread (getting a pointer to its result, if any)

int pthread_create (pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

void pthread_exit (void *value_ptr);

void pthread_join (pthread_t thread, void *value_ptr);

 Divide the total number by the number of threads to determine how
many numbers to give each thread

 Loop through all threads:
 Allocate a range struct to hold the lower and upper value for each thread
 Create each thread

 Loop through all threads:
 Join them

 Inside each thread:
 Loop from the lower to the upper value and increment a counter if the value is

prime
 Store the count into the range struct
 Call pthread_exit()when done

 Synchronization and critical sections
 Locks

 Finish Assignment 6
 Due Friday before midnight

 Start working on Project 3 as soon as you can
 Read sections 7.2 and 7.3

	COMP 3400
	Last time
	Questions?
	Assignment 6
	Exam 2 Post Mortem
	POSIX Threads
	Returning values from threads
	Returning in the args struct
	Returning a "pointer" that's an int
	Returning a pointer to a dynamically allocated struct
	Language Approaches to Threading
	OpenMP
	Object-oriented approaches
	Java threading example
	Java threading example continued
	Modern languages
	Threading in Go
	Threading in Rust
	Concurrent prime number search
	POSIX thread functions
	Algorithm
	Upcoming
	Next time…
	Reminders

