Week 10 —Wednesday

COMP 3400

What did we talk about last time?
Exam 2!

Before that:

= Review
Before that:

= Thread safety

= POSIX threads

Creating threads

Exiting threads

Joining threads

Passing arguments to threads
Reading results from threads

Questions?

Assignment 6

Exam 2 Post Mortem

POSIX Threads

= A common model for threads is for them to go and perform
some work

= After the work is done, they need to give back the answer

= There are three ways to do this:

1.

Store the answer back into the dynamically allocated struct passed
in for its arguments

Use the hack like before to return a "pointer" through the join that's
actually an int

Return a pointer through the join to a dynamically allocated struct
containing the answer

Returning in the args struct

struct numbers ({
int a;
int b;
int sum;

};

void *sum thread (void *args)

{
struct numbers *values = (struct numbers¥*)args;
values->sum = args->a + args->b;
pthread exit (NULL) ;

}

int main (int argc, char **argv)
{
pthread t child;
struct numbers values = malloc(sizeof (struct numbers)) ;
values->a = 5;
values->b = 8;
pthread create (&child, NULL, sum_ thread, values);
pthread join(child, NULL) ;
printf ("Sum: %d\n", values->sum) ;
free (values);
pthread exit (NULL) ;

Returning a "pointer" that's an int

struct numbers ({
int a;
int b;
};

void *sum thread (void *args)
{
struct numbers *values = (struct numbers¥*)args;
int sum = args->a + args->b;
free (values);
pthread exit ((void¥*)sum);

}

int main (int argc, char **argv)
{
pthread t child;
struct numbers *values = malloc(sizeof (struct numbers)) ;
values->a = 5;
values->b = 8;
pthread create (&child, NULL, sum thread, wvalues);
void *sum = NULL; —
pthread join(child, &sum);
printf ("Sum: %d\n", (int) sum);
pthread exit (NULL) ;

Returning a pointer to a dynamically allocated struct

struct numbers {
int a;
int b;

};

void *calculator (void *args)
{
struct numbers* values = (struct numbers*)args;
struct numbers* answers = malloc(sizeof (struct numbers)) ;
answers->a = values->a + values->b;
answers->b = values->a - values->b;
free (values);
pthread exit (answers);

}

int main (int argc, char **argv)

{
pthread t child;
struct numbers *values = malloc(sizeof (struct numbers)) ;
values->a = 5;
values->b = 8;
pthread create (&child, NULL, calculator, values);
struct numbers *answers = NULL;
pthread join(child, (void **) &answers) ;
printf ("Sum: %d\nDifference: %d\n", answers->a, answers->b);
free (answers);
pthread exit (NULL) ;

Language Approaches to Threading

All the nitty gritty details of starting threads, sending arguments to them,
getting answers back, and joining the threads are annoying

OpenMP is a library with a set of #pragma compiler directives that
converts specially formatted code into code that takes care of all the
threading details

= Known as implicit threading, since the programmer doesn't write thread code

It's ideal for the fork-join model where a main thread forks lots of threads

to work on parts of a problem and then joins them together, combining

their answers

'(Ij'he bIOOk has an example of OpenMP syntax, but | don't want to go into
etails

If you do a lot of parallel processing with a simple structure, OpenMP can

be worth learning

= Java, C#, Python, and many other newer languages
encapsulate threads as objects

= Data can be provided in the object's constructor

= Methods can be used to read data after the thread has
finished running

= Special methods are reserved for starting and joining threads

Java threading example

The following Java class extends Thread and is designed to sum
up part of an array

public class Summer extends Thread {
private double[] array;
private int lower;
private int upper;
private double sum = 0;

public Summer (double[] array, int lower, int upper) {
this.array = array;
this.lower lower;
this.upper upper;

}

public void run() {
for(int i = lower; i < upper; i++)
sum += arrayl[i];

}

public double getSum() { return sum; }

Java threading example continued

The following Java method uses the class from the previous slide
to sum up parts of an array in parallel

public double sum(double[] array, int threads) throws InterruptedException {
// Only works if length is evenly divisible
int stride = array.length / threads;
Summer[] workers = new Summer|[threads];
for(int 1 = 0; i < threads; ++i) {
workers[i] = new Summer (array, i*stride, (i + 1) *stride);
workers|[i] .start () ;

}

double result = 0.0;

for(int 1 = 0; i < threads; ++i) {
workers[i] . join() ;
result += workers[i].getSum() ;

}

return result;

= Although Java is relatively new, it was designed before the
advent of ubiquitous multicore processors
= Threads are still accessed via a library rather than being part

of the core language
= Modern languages like Rust and Go have keywords associated

with threading

Threading in Go

Merely putting the keyword go in front of a function makes it run
on a new thread

func main () {
// Create a channel for communication
messages := make (chan string)

fmt.Print ("Guess a number between 1 and 10: ")

// Start keyboard listener as a goroutine with the channel
go keyboard listener (messages)

// Wait until there is data in the channel
success := <-messages
1f success == "true" {

fmt.Println("You must have guessed 7.")
}

Threading in Rust

Rust is a new language that competes with C/C++ in systems programming

It's finicky about ownership
The move command in the following code gives the closure its own copy of x at the current value

fn main() {
let mut x = 10; // Initialize a mutable wvariable x to 10

// Spawn a new thread
let child thread = thread: :spawn(move || {
thread: :sleep(time: :Duration::from secs (1)) ; // Sleep for one second

println! ("x = {}", x); // Print x
})

// Change x in the main thread and print it
x += 1;
println! ("x = {}", Xx);

// Join the thread and print x again
child thread.join();
println! ("x = {}", X);

= Let's write a threaded program that counts the number of primes

less than 100,000,000
= We'll spawn a number of threads and divide up the range of values

from o to 100,000,000 evenly
= To send data to each thread and get the result, we'll use

dynamically allocated versions of the followmg struct:

struct range {
unsigned long start;
unsigned long end;
unsigned long count;

};

= As areminder, here are the POSIX functions we need

int pthread create (pthread t *thread, const pthread attr t *attr,
void * (*start routine) (void¥*), void *arg);

= Create a new thread (not as bad as it looks)

void pthread exit (void *value ptr);

= Exit from the current thread (giving a pointer to the result, if any)

void pthread join (pthread t thread, void *value ptr);

= Join a thread (getting a pointer to its result, if any)

Divide the total number by the number of threads to determine how
many numbers to give each thread

Loop through all threads:

= Allocate a range struct to hold the lower and upper value for each thread

= Create each thread
Loop through all threads:

= Jointhem
Inside each thread:

= Loop from the lower to the upper value and increment a counter if the value is
prime

= Store the count into the range struct
= Callpthread exit () whendone

Upcoming

= Synchronization and critical sections
= Locks

= Finish Assignment 6

= Due Friday before midnight
= Start working on Project 3 as soon as you can
= Read sections7.2and 7.3

	COMP 3400
	Last time
	Questions?
	Assignment 6
	Exam 2 Post Mortem
	POSIX Threads
	Returning values from threads
	Returning in the args struct
	Returning a "pointer" that's an int
	Returning a pointer to a dynamically allocated struct
	Language Approaches to Threading
	OpenMP
	Object-oriented approaches
	Java threading example
	Java threading example continued
	Modern languages
	Threading in Go
	Threading in Rust
	Concurrent prime number search
	POSIX thread functions
	Algorithm
	Upcoming
	Next time…
	Reminders

